Bước tới nội dung

Hình đới cầu

Bách khoa toàn thư mở Wikipedia
Hình đới cầu hay cầu phân.

Trong hình học không gian, hình đới cầu, khối đới cầu hay, cầu đài, cầu phân (spherical segment), là một phần của khối cầu đặc, xác định bằng cách cắt khối cầu bởi hai mặt phẳng song song. Phần bề mặt cong của nó gọi là mặt đới cầu.

Thể tích của hình đới cầu bằng:

  • ,

với là bán kính của hai hình tròn giới hạn (mặt phẳng đáy và mặt phẳng đỉnh của hình đới cầu) và chiều cao của nó. Diện tích của mặt đới cầu bằng:

và tổng diện tích bề mặt hình đới cầu (hai mặt phẳng đáy và đỉnh và mặt đới cầu):

  • .

Từ các dữ liệu của hình đới cầu, bán kính của mặt cầu bao hình đới cầu bằng:

Chứng minh công thức

[sửa | sửa mã nguồn]

Thể tích của hình đới cầu bằng thể tích của hình chỏm cầu (spherical cap) lớn (có đáy là mặt phẳng đáy của hình đới cầu), trừ đi thể tích của hình chỏm cầu (có đáy là mặt phẳng đỉnh của hình đới cầu). Đặt là chiều cao của là chiều cao của .

Thể tích

[sửa | sửa mã nguồn]

Thể tích của các hình chỏm cầu lần lượt bằng (xem hình chỏm cầu). Do vậy

Với mối liên hệ (xem bài hình chỏm cầu) thu được

.

nên suy ra công thức thể tích: .

Diện tích mặt đới cầu

[sửa | sửa mã nguồn]

Với diện tích mặt đới cầu chứng minh tương tự

.

Bán kính mặt cầu

[sửa | sửa mã nguồn]

Để chứng minh mối quan hệ giữa là khoảng cách từ mặt phẳng đáy đến tâm hình cầu . Do vậy

.

Đặt hai phương trình bằng nhau và thay thế , với Quay trở lại phương trình (1) có

.

Thư mục

[sửa | sửa mã nguồn]
  • Kern, William F.; Bland, James R. (1938). Solid Mensuration with Proofs. tr. 95–97.
  • I. Bronstein u.a.: Taschenbuch der Mathematik. Harri Deutsch, Frankfurt 2001, ISBN 3-8171-2005-2.
  • Kleine Enzyklopädie Mathematik, Harri Deutsch-Verlag, 1977, S. 215.
  • L. Kusch u.a.: Mathematik, Teil 4 Integralrechnung. Cornelsen, Berlin 2000, ISBN 3-464-41304-7.

Tham khảo

[sửa | sửa mã nguồn]

Liên kết ngoài

[sửa | sửa mã nguồn]